等级考试python案例,python考级多少分才算过

python自定义函数经典案例?
一个经典的Python自定义函数案例是计算斐波那契数列。斐波那契数列是一个数列,每个数都是前两个数之和,例如:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 15***, 2584, 4181, 6765, 10946, 17711, 28657等。通过编写一个自定义函数来计算斐波那契数列,可以提高代码的可读性和重复使用性。
这个函数可以接收一个参数n来指定要计算的斐波那契数列的长度,然后返回一个包含n个数的斐波那契数列列表。
一个经典的python自定义函数案例是编写一个函数来计算斐波那契数列。通过定义一个递归函数来实现这一功能,可以让用户输入一个数字n,然后返回斐波那契数列的前n个数字。这个函数可以帮助用户快速计算斐波那契数列,展示了python函数的灵活性和实用性。同时,通过编写这样的函数,还可以加深对python编程的理解和熟练程度。
python人工智能编程例子?
Python在人工智能中的实际运用,以下两例就是:
1.TensorFlow最初是由谷歌公司机器智能研究部门旗下Brain团队的研究人员及工程师们所开发。这套系统专门用于促进机器学习方面的研究,旨在显著加快并简化由研究原型到生产系统的转化。
2.Scikit-learn是一套简单且高效的数据挖掘与数据分析工具,可供任何人群、多种场景下进行复用。它立足NumPy、SciPy 以及matplotlib构建,遵循BSD许可且可进行商业使用。
Python是学什么的?能做什么?
Python是一个万能工具。不论你是不是IT工作者。熟练的使用Python都可以提高你的工作效率。尤其是经常需要做数据处理的工作。
你可以利用pandas python 库来处理excel文件,做数据分析和报告。比如下面这样的一个excel。
你可以用一句python就可以读出来:
sheet = pd.read_excel("data/services.xlsx")
打印出来是这样的:
之后你就可以很方便的用python来分析和操作这个excel了。
Python几乎是近几年最火的一门计算机语言。借着机器学习,尤其是深度学习的兴起,Python的发展搭上了快车。
如今深度学习领域最常用的两大框架TensorFlow和PyTorch都是基于Python的,所以学会Python几乎是所有做相关研究的人必备的技术。
Python相对于其他的语言优势很多,但是我想说的是它的“胶水”特性。
我们都知道,每一种语言都有其特长,比如C语言的迅速,J***a的“一处编译,多处运行”,R语言广泛的统计学的包和Julia的计算快速。但是同时每一门语言都为这个特长牺牲了其他的性能。
Python可以作为胶水让你使用各个语言的特长,我们能在Python中使用C、J***a、R和Julia,并且现在都已经有成熟的包让我们方便地使用。这些都是Python大行其道的原因。
其实计算机语言中马太效应是很明显的,也就是强者越强,弱者越弱。
在前几年做深度学习研究的人还在用Matlab,是因为之前的很多模型都是用Matlab写的,并且Matlab可以很方便地做矩阵运算。
但是随着近几年Python的包越来越完善,加上Google和Facebook分别发力做出了两个框架,Matlab终于寿终正寝,不再是人们研究的第一选择。
其实Python在前几年一直顶着一个“慢”的名头,是因为它是个弱类型的语言,在运行的时候需要动态解释。
这就相当于在运行的时候需要做很多的判断,速度自然就慢下去了。也就是近几年通过很多的优化,并且Python社区的发展,人们才慢慢地能够忍受这种慢,前提还是很多底层代码是用C来写的。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.ntnbw.com/post/18384.html